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Nomenclature

Numbers

No
R

R,
C

Functions

Cn

E,(z)
Eop(z)
1F1(a; b; l’)
oF1(a,b;¢; 1)
Uz — zo)
i(x)

I'(z)
b(z)

natural numbers, N := {1,2,3,...}

counting numbers, Np = {0,1,2,...}

real numbers

positive real numbers, R, :={a € R : a > 0}
complex numbers, C == {z +iy: z,y € R;i = /-1}

set of all continuous n-differentiable functions

Mittag-LefHler function in one parameter, o

Mittag-Leffler function in two parameters, o & 3

Kummer confluent hypergeometric function

Gauss hypergeometric function

unit step function

Dirac delta distribution (the generalized function usually characterized
by the property that f_°°oo §(z) f(z)dz = 6[f] = f(0) whenever f is
continuous at 0)

Euler’s continuous gamma function

digamma function

Differential and Integral Operators

Dn
D a
D¢
Jn
Ja

differential operator, n € N

Riemann-Liouville fractional differential operator, a € R,
Caputo fractional differential operator, o € R,

Cauchy n-fold integral operator, n € N
Riemann-Liouville fractional integral operator, o € Ry

Scalar Fields

A;

dA
ac
dH
as

surface area whose normal points in the i*" coordinate direction
differential element for area-of-surface

reference distance separating neighboring planes

differential element for height-of-separation between planes
differential element for distance-of-separation between points
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av differential element for volume-of-mass

e dilatation

f force in 1D

fi force in the i*® coordinate direction

fij force in the i*® coordinate direction acting on a surface whose unit
normal is in the j*® coordinate direction

G viscoelastic (or relaxation) modulus

G &G viscoelastic storage and loss (dynamic) moduli

i*h relaxation function

n®® invariant of an integrity basis

viscoelastic compliance

current length of gauge section

gauge length

i*" memory function

hydrostatic pressure

Lagrange multiplier forcing an isotropic constraint

Laplace transform variable

magnitude of shear

time

absolute temperature

speed of sound

work

.

BSSsRT23° 88550

potential function representing work
fractal order of evolution

fractal order of evolution in bulk response
viscoelastic material constant
engineering shear strain

dilatation, classic definition
dilatation, Hencky’s definition
strain in 1-D

viscosity

bulk modulus

principal stretch ratio

stretch along fiber direction

ith principal stretch ratio

elastic shear modulus

Pi characteristic retardation time

p characteristic bulk retardation time
0 mass density

o stress in 1-D

o; it® principal stress

S reaction stress

L
8

TTESSEAII NS
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T shear stress

T, T; characteristic relaxation time

T characteristic bulk relaxation time
v, first normal-stress difference

v, second normal-stress difference

w angular frequency (rad/sec)

Quter Products

a®b vector outer product with components a;b; where 7,5 = 1,2,3
A®B tensor outer product with components A;;By, where 4,5,k,£=1,2,3
AXD symmetric tensor outer product with components %(AikBﬂ + Aiijk)

where 4, j5,k,£=1,2,3

Body

B manifold, B € R?

B coordinate system

B particle (a material point)
g coordinates, § = (E!,E2,E?)

Body Vector and Tensor Fields

fourth-order, contravariant, tangent operator

)

&
2,
~

coordinate differences between neighboring particles
contact force acting on differential area

contravariant unit vector in preferred material direction
contravariant areal strain tensor

mixed idem tensor
covariant metric tensor

-

contravariant metric tensor

covariant strain tensor (strain between material points)
contravariant strain tensor (strain between material planes)
arbitrary contravariant tensor

tensor of arbitrary weight, kind and rank

mixed stretch tensor

arbitrary covariant tensor

covariant unit normal vector

contravariant stress tensor

contravariant deviatoric stress tensor

contravariant extra-stress tensor

[l IR [ DS Hviin 12 1R 1% IR l&lﬁ.; e

Body Tensor Rates
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D partial derivative
D¢ Caputo fractional derivative
J Riemann-Liouville fractional integral

Field Transfer

t
=5 Eulerian transfer of field: body into Cartesian space
¢

: Lagrangian transfer of field: body into Cartesian space

Cartesian Space

manifold, S € R3

(rectangular) Cartesian coordinate system

place containing particle B in initial state ¢,

reference (Lagrangian) position vector to X, with coordinates X =
(Xl, Xz, Xg) in C

place containing particle B in current state ¢

current (Eulerian) position vector to X with coordinates x = (x;, Xz, X3)
in C

unit tensor

EEFCR SO

Kinematic Fields

acceleration vector

velocity vector

deformation gradient tensor
velocity gradient tensor
orthogonal rotation tensor

=~ e WA

=
5
=
)
=}
5
[¢]
-
=]
L]
o
=]
(=R
%
=)
42]
Q
=
=
o
P
=9
wn

unit vector in preferred material direction

coordinate differences between neighboring places
body-force vector

unit-normal vector

Almansi strain tensor (strain between material points)

S
&
ol

z

generalized anisotropic strain tensor of order n
Finger deformation tensor
fourth-order tangent operator

e

anisotropic part of elastic tangent operator

(3

isotropic elastic part of viscoelastic tangent operator

o
5]

anisotropic elastic part of viscoelastic tangent operator

<

OO IS 1 113> 13155

isotropic viscous part of viscoelastic tangent operator
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<
IS]

& 116
&

lQINI<I=UNIR IR~ IQIQT

anisotropic viscous part of viscoelastic tangent operator

generalized strain tensor of order n
arbitrary contravariant-like tensor
fourth-order relaxation modulus

arbitrary tensor
arbitrary covariant-like tensor
fourth-order memory function

Cauchy stress tensor

deviatoric Cauchy stress tensor

left stretch tensor :

Signorini strain tensor (strain between material planes)
spatial-gradient operator, §/0x

Eulerian Tensor Rates

ao

D, 8/t

Q> ([D2 [10e IS

DG

Rallse
I

DM
M
)=

unit vector in preferred material direction
partial derivative

material derivative

rate-of-deformation tensor

upper-fractal rate-of-deformation tensor of order «
lower-fractal rate-of-deformation tensor of order «

upper-convected (Oldroyd) derivative of a contravariant-like tensor G
upper-fractal derivative of order « of a contravariant-like tensor G
upper-fractal integral of order « of a contravariant-like tensor G

corotational (Zaremba-Jaumann) derivative of an arbitrary tensor J

lower-convected (Oldroyd) derivative of a covariant-like tensor M
lower-fractal derivative of order o of a covariant-like tensor M

lower-fractal integral of order o of a covariant-like tensor M
vorticity tensor

Lagrangian Vector and Tensor Fields

dX & dX

1= = aQe (=

coordinate differences between neighboring places
unit-normal vector

Green deformation tensor

fourth-order tangent operator

Green strain tensor (strain between material points)
arbitrary contravariant-like tensor
arbitrary covariant-like tensor

NASA/TM—2002-211914 Xi



second Piola-Kirchhoff stress tensor

deviatoric part of second Piola-Kirchhoff stress tensor
Lagrangian stress tensor

right stretch tensor

Lagrangian strain tensor (strain between material planes)
spatial-gradient operator, 0/0X

wiiiaS[w]lla-Rlla-Miliae
< *

Lagrangian Tensor Rates

D partial derivative
D¢ Caputo fractional derivative
J Riemann-Liouville fractional integral
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Preface

This is the first annual report to the U.S. Army Medical Research and Material
Command for the three year project “Advanced Soft Tissue Modeling for Telemedicine
and Surgical Simulation” supported by grant No. DAMD17-01-1-0673 to The Cleve-
land Clinic Foundation, to which the NASA Glenn Research Center is a subcontractor
through Space Act Agreement SAA 3-445.

The objective of this report is to extend popular one-dimensional (1D) fractional-
order viscoelastic (FOV) material models into their three-dimensional (3D) equiva-
lents for finitely deforming continua, and to provide numerical algorithms for their
solution. The present report is organized into seven chapters and three appendices.

The first chapter serves as an introduction to the fractional calculus. Algorithms
for computing fractional derivatives, fractional integrals, fractional-order differential
equations (FDE’s), and the Mittag-Leffler function (which apprears in analytic solu-
tions of FDE’s) are provided.

One of the oldest applications of the fractional calculus is viscoelasticity. Chapter
two presents an overview of 1D FOV. Definitions for the standard FOV fluid and
the standard FOV solid are put forth along with formule that are useful in their
characterization, assuming infinitesimal strains and rotations.

The third chapter provides an overview of continuum mechanics using body (i.e.,
convected) tensor fields. Three strain fields are introduced that are measures of
strain based on changes in: length of line, separation of non-intersecting surfaces,
and volume of mass. Introduced here for the first time are fractal rates of arbitrary
tensor fields. Body fields are useful when deriving contitutive equations.

In the fourth chapter, the body fields defined in the previous chapter are mapped
into objective, Cartesian, space fields. A useful by-product of field transfer is that
those spatial fields created by field transfer are frame invariant. Spatial fields are
useful when solving boundary-value problems.

The fifth chapter derives isotropic and transverse-isotropic theories for elastic and
viscoelastic materials by applying a work potential to an integrity basis. Both com-
pressible and incompressible materials are considered. These theories are derived
in the body and then transferred into Cartesian space in both the Eulerian and La-
grangian frames. The tangent modulus is derived for the general theoretical structures
of elastic and viscoelastic solids.

A suite of homogeneous experiments used to characterize material models is pre-
sented in the sixth chapter. The suite includes the homogeneous deformations of:
shear-free extension (e.g., uniaxial elongation, biaxial extension, pure shear, and di-
lational compression) and simple shear. The deformation, stress and strain fields
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defined in the prior chapter, along with their various rates, are all quantified for this
suite of experiments.

Chapters seven through nine provide elastic and viscoelastic constitutive models
appropriate for 3D analysis. Chapter seven provides material models for bulk re-
sponse. Chapter eight will introduce material models for isotropic elastomers, while
chapter nine will introduce material models for soft biological tissues, which are gen-
erally transverse isotropic; they will be completed for the second annual report. Both
classical and fractional-order viscoelastic models are presented. Included are solutions
for the characterization experiments of chapter six.

There are three appendices. The first appendix tabulates Caputo fractional deriva-
tives for a few of the more common mathematical functions. The second appendix
outlines an automatic procedure for numerical integration that is required by the algo-
rithm which computes the Mittag-Leffler function. And the third appendix provides
an efficient scheme for approximating a specific form of the Mittag-Lefler function
that arises in FOV.
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Chapter 1

Fractional Calculus:
numerical methods

1.1 Riemann-Liouville Fractional Integral

In the classical calculus of Newton and Leibniz, Cauchy reduced the calculation of an
n-fold integration of the function y(z) into a single convolution integral possessing
an Abel (power law) kernel,

z Tn—-1 z1
Jy(z) :=/0 /0 /0 y(zo)dzg...dxp_2dzn_1

1 z 1
=), Gy neN ek

where J" is the n-fold integral operator with J%y(z) = y(z), N is the set of positive
integers, and R, is the set of positive reals. Liouville and Riemann* analytically
continued Cauchy’s result by replacing the discrete factorial (n — 1)! with Euler’s
continuous gamma function I'(n), noting that (n —1)! = I'(n), thereby producing [67,
€5, Eqn. A]

(1.1)

« = 1 ’ ! )dz', a,z
1y@) = e || Gy, azek, (1.2

where J® is the Riemann-Liouville integral operator of order «, which commutes (i.e.,
JoJBy(z) = JBJ%y(z) = J**Py(z) V , B € R} ). Equation (1.2) is the cornerstone of
the fractional calculus, although it may vary in its assignment of limits of integration.
In this report we take the lower limit to be zero and the upper limit to be some
positive finite real. Actually, a can be complex [102], but for our purposes we only
need it to be real.

A brief history of the development of fractional calculus can be found in Ross
[100] and Miller and Ross [78, Chp. 1]. A survey of many emerging applications of
the fractional calculus in areas of science and engineering can be found in the recent
text by Podlubny [86, Chp. 10].

*Riemann’s pioneering work in the field of fractional calculus was done during his student years,
but published posthumous—forty-four years after Liouville first published in the field [100].
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1.2 Caputo-Type Fractional Derivative

From this single definition for fractional integration one can construct several def-
initions for fractional differentiation (cf. e.g., [86, 102]). The special operator D2
that we choose to use, which requires the dependent variable y to be continuous and
[a]-times differentiable in the independent variable x, is defined by

D2y (z) = Jlel=e plely (g, (1.3)

such that
lim D¢y(z) = D"y(z) for mneN, (1.4)
a—n_

with DJy(z) = y(z), where [a] is the ceiling function giving the smallest integer
greater than (or equal to) a, and where @ — n_ means a goes to n from below.
The operator D", n € N, is the classical differential operator. It is accepted practice
to call DY the Caputo differential operator of order «, after Caputo [12] who was
the amoung the first to use this operator in applications and to study some of its
properties.! Appendix A presents a table of Caputo derivatives for some of the more
common mathematical functions.
The Caputo differential operator is a linear operator

D¢ (y + z) (z) = D¢y(z) + DZ2z(zx) | (1.5a)
that commutes

D¢Dly(z) = D{D}y(e) = Di*Py(e) V a,B€R, (1.5b)

if y(x) is sufficiently smooth, and it possesses the desirable property that
DZc=0 for any constant c. (1.5¢)
The more common Riemann-Liouville fractional derivative D, although linear, need
not commute [86, pg. 74]; furthermore, D% = Dlel jlel=a¢ = cz=e/T(1 — @), which
is a function of 2! Ross [100] attributes this startling fact as the main reason why

the fractional calculus has historically had a difficult time being embraced by the
mathematics and physics communities.

t Actually, Liouville introduced the operator in his historic first paper on the topic [67, 6, Eqn. BJ.
Still, nothing in Liouville’s works suggests that he ever saw any difference between D% = Jl@l—a plal
and D = Dleljlel-a Do being his accepted definition [67, first formula on pg. 10]—the Riemann-
Liouville differential operator of order a. Liouville freely interchanged the order of integration and
differentiation, because the class of problems that he was interested in happened to be a class where
such an interchange is legal, and he made only a few terse remarks about the general requirements
on the class of functions for which his fractional calculus works [74]. The accepted naming of the
operator DY after Caputo therefore seems warrented.

Rabotnov [90, pg. 129] introduced this same differential operator into the Russian viscoelastic
literature a year before Caputo’s paper was published. Regardless of this fact, operator D¢ is
commonly named after Caputo in the current liturature.

NASA/TM—2002-211914 2



The Riemann-Liouville integral operator J* and the Caputo differential operator
D¢ are inverse operators in the sense that

le]

D2Jy(z) =y(z) and J*DJy(e)=y(z) - Zk, vel, a€R,,  (16)
k=0

with y (*) .= pk y(0%), where || is the floor function giving the largest integer less
than a. The classic n-fold integral and differential operators of 1nteger order satisfy
like formulee, viz.: D"J"y(z) = y(z) and J*D"y(z) = y(z) — S rs ”,”c, y((,+), neN

A word of caution. Fractional derivatives do not satisfy the Leibniz product rule
of classical calculus. For example, whenever the Caputo derivative is restricted so
that 0 < a < 1, the Leibniz product rule is given by

D¢ (y x z)(z) = 1"?’1(0—41) X 2(z) ;az(OJ“) + (D2y)(z) x z(z)

+ Z( ) J¥2y)(z) x (D*z)(z),

where, unlike the Leibniz product rule for integer-order derivatives, the binomial
coefficients (§) = a(a_l)(a_i!)"'(a—kJrl) (with (§) = 1, € R; and k¥ € N) do not
become zero whenever k > a because o € N (i.e., the binomial sum is now of infinite
extent). A similar infinite sum exists for the Leibniz product rule of the Riemann-

Liouville fractional derivative (cf. Podlubny [86, pp. 91-97]).

(1.7)

1.2.1 Integral Expressions

The Caputo derivative (1.3) can be expressed in more explicit notation as the integral

Dy(z) = r([oql v /0 ’ = xl,)a_m (DI*ly)(z') da’, o,z €Ry,  (1.8a)

where the weak singularity caused by the Abel kernel of the integral operator is readily
observed. This singularity can be removed through an integration by parts

D2y (z) = e I_la_l ) < [a]- ay(fa]) +/0 ( xr)[a]—a (DHra]Y)(:l:') d:v;) , |
1.8b

provided that the dependent variable y is continuous and (1+{a])-times differentiable
in the independent variable z over the interval of differentiation (integration) [0, z]. In
(1.8b) the power-law kernel is bounded over the entire interval of integration; whereas,
in (1.8a) the kernel is singular at the upper limit of integration.

The two representations of (1.8a) and (1.8b) are quite useful for pen-and-paper
calculations, but in order to obtain a numerical scheme for the approximation of
such fractional derivatives, we found it even more helpful to look at yet another
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representation that seems to have been introduced into this context by Elliott [30];
namely,

[o] J— 1 N 1 ! !
Dly(z) = (o) /0 @ z) y(z')ds', a,zeR;. (1.8¢)

This representation can also be obtained from (1.8a) using the method of integration
by parts, but with the roles of the two factors interchanged. The advantage here
is that the function y itself appears in the integrand instead of its derivative. The
disadvantage is that the singularity of the kernel is now strong rather than weak, and
thus we have to interpret this integral as a Hadamard-type finite-part integral. This
is cumbersome in pen-and-paper calculations but, as we shall see below, it is not a
problem to devise an algorithm that makes the computer do this job. We provide a
brief description of such an algorithm in the following pages. For more details, the
interested reader is referred to [20, 30] and the references cited therein.

1.3 Caputo-Type FDE’s

Fractional material models, the subject of this report, are systems of fractional-order
differential equations (FDE’s) that need to be solved in accordance with appropriate
initial and boundary conditions. A FDE of the Caputo type has the form

D2y(z) =f(z,y(z)), o,zeRy, (1.9a)

satisfying the (possibly inhomogeneous) initial conditions
y#® = Dby (0%), k=0,1,...,|al, (1.9b)

and whose solution is sought over an interval [0, X], say, where X € R;. It turns
out that under some very weak conditions placed on the function f of the right-hand
side, a unique solution to (1.9) does exist [21].

A typical feature of differential equations (both classical and fractional) is the
need to specify additional conditions in order to produce a unique solution. For the
case of Caputo FDE’s, these additional conditions are just the static initial condi-
tions listed in (1.9b), which are akin to those of classical ODE’s, and are therefore
familiar to us. In contrast, for Riemann-Liouville FDE’s, these additional conditions
constitute certain fractional derivatives (and/or integrals) of the unknown solution
at the initial point z = 0 [57], which are functions of z! These initial conditions are
not physical; furthermore, it is not clear how such quantities are to be measured from
experiment, say, so that they can be appropriately assigned in an analysis.? If for no

tWe explicitly note, however, the very recent paper of Podlubny [87] who attempts to give
highly interesting geometrical and physical interpretations for fractional derivatives of both the
Riemann-Liouville and Caputo types. These interpretations are deeply related to the questions:
What precisely is time? Is it absolute or not? And can it be measured correctly and accurately, and
if so, how? Thus, we are still a long way from a full understanding of the geometric and physical
nature of a fractional derivative, let alone from an idea of how we can measure it in an experiment,
but our mental picture of what fractional derivatives and integrals ‘look like’ continues to improve.
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other reason, the need to solve FDE’s is justification enough for choosing Caputo’s
definition (i.e., D¢ = Jl¢l=¢Dlel) for fractional differentiation over the more com-
monly used (at least in mathematical analysis) definition of Liouville and Riemann
(viz., D* = Dlel jlal=e),

1.4 Numerical Approximations

1.4.1 Caputo-type Fractional Derivatives

Unlike ordinary derivatives, which are point functionals, fractional derivatives are
hereditary functionals possessing a total memory of past states. A numerical algo-
rithm for computing Caputo derivatives has been derived by Diethelm [20]} and is
listed in Alg. 1.1. Validity of its Richardson extrapolation scheme for 1 < a < 2,
or one similar to it, has to date not been proven, or disproven. Here y, denotes
y(z,), while yy represents y(X) where [0, X] is the interval of integration (fractional
differentiation) with 0 < z, < X. This algorithm was arrived at by approximating
the integral (1.8c) with a trapezoidal product method, thereby restricting 0 < a < 2.
Similar algorithms applicable to larger ranges of a can be constructed by using the
general procedure derived in Ref. [20], if they become needed.

The Griinwald-Letnikov algorithm is often used to numerically approximate the
Riemann-Liouville fractional derivative (cf., e.g., with Oldham and Spanier [82, §8.2]
and Podlubny [86, Chp. 7]) and it was the first algorithm to appear for approximating
fractional derivatives (and integrals).

The extent of rememberance of past states exhibited by the hereditary nature
of a fractional derivative is manifest, for example, in its weights of quadrature, as
illustrated in Fig. 1.1. This operator exhibits a fading memory: 0.001 < |agg| < 0.01
for the six cases plotted in this figure. If Dy(X) were to be approximated by a
backward difference with h = X/8, then the effective weights of quadrature would
be apg = 1 and a3 = —1 with all remaining weights being zero, as represented
by the line segments in this figure. Similarly, if D?y(X) were to be approximated
by a like backward-difference scheme, then agg = 1, a;3 = —2 and a5 = 1 with all
remaining weights being zero. It is evident from the data presented in Fig. 1.1 that the
weights of quadrature a, g for approximating D2y (X) are compatible with those for
the first- and second-order backward differences, and that fractional quadratures have
additional contributions that monotonically diminish with increasing nodal number
from node n = 2 fading all the way back to the origin at node n = N. This suggests
that a truncation scheme may be able to be used to enhance algorithmic efficiency
for some classes of functions, but not all.

$ Apparently this algorithm first appeared in the PhD thesis of Chern [15], unbeknownst to us
(KD) at the time of writing Ref. [20]. Chern used this algorithm to differentiate a Kelvin-Voigt,
fractional-order, viscoelastic, material model in a finite element code. He did not address stability
or uniqueness of solution issues; he did not compute error estimates; and he did not utilize an
extrapolation scheme to enhance solution accuracy.
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Algorithm 1.1 Computation of a Caputo fractional derivative (0 < a < 2,a # 1).
For interval [0, X] with grid {z, = nh: n=0,1,2,..., N} where h = X/N, compute
a a) (N—n)khr* _(k
Dgyn(h) = arisy Ym0 @n,N (}’N—n - i ey )’
Dgy(X) = Dyyn(h) + O(R*™),

using the quadrature weights (derived from a trapezoidal product rule)

1’ ifn= 0,
_ 21—cx _ 2’ ifn= ].,
Qn,N = (n+1)*—2nt=* 4+ (n—1) f2<n<N-1,

(1—a)N~¢— N+ (N -1)'"%, ifn=N.
Refine, if desired, using Richardson extrapolation
D2y: = (Dgyich — 2 Dgyi) [ (L—27+),
Dyy(X) = Dgyy + O(h™),
such that if 0 < o < 1 then r,_; is assigned as
To =2—q,
rmn=2 r=3—-qa r3=4-aq¢,
1”4=4, 7‘5-'—“5—Ol, r6=6—a,
T = 6?

Diethelm’s Quadrature Weights for Fractional Differentiation
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Figure 1.1: Weights of quadrature a, y for approximating Caputo’s fractional deriva-
tive (1.8) over interval [0, X] using Diethelm’s [20] Alg. 1.1, plotted here for various
values of a with N = 8.
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Richardson extrapolation

Richardson extrapolation is a technique that can often be used to increase the accu-
racy of results [24]. As we utilize it, this technique follows a triangular scheme—a
Romberg tableau—that has the form

Dgyg

Dyy? Dgyi

Dgyy Dgy; D2y (1.10)
Dgyy Dgy; Diyi Dy;

Constructing the first column of the tableau constitutes the bulk of the computational
effort. Here D2y3 := D2y n(h) denotes the value of D2y evaluated numerically at X
over [0, X] using an initial stepsize of h (= X/n), D2y? = D2yn("/2) is computed
using the refined stepsize of 1h (= X/on), D2y9 := D2yn(h/4) is computed using the
more refined stepsize of %h (= X/an), while D%y} := D®yn(h/s) is computed using
the further refined stepsize of h (= X/sn), etc. The remaining columns are quickly
evaluated using the recursive formula listed in Alg. 1.1. The advantage of constructing
this tableau is that the elements D2y%(X) in the u* column converge for fixed u and
increasing v towards the true value of the Caputo derivative as O(h™). Hence, the
further one moves to the right in the tableau the faster the column converges, and
this level of convergence requires less computational effort to achieve than a direct
computation of D%y (X; k) when computed to a similar accuracy of O(h™) ~ O(h™).

Step-size choice

The error analysis mentioned above is only a truncation error analysis. It assumes
that the calculations are done in exact arithmetic, and it does not take into account
effects like roundoff. When one needs to look at these effects too, it is possible to
ask for a step size h = X/N whose combined effect arising from both error sources is
minimized. As we have seen above, it is likely that the truncation error decreases with
the step size h, whereas roundoff tends to have the opposite behavior, so we should be
looking for a sort of compromise. The considerations in this context are very similar
to those for integer-order derivatives [89, §5.7]. Roughly speaking, it turns out that
the roundoff error behaves as h™%¢, f(n), where ¢, is the relative accuracy with which
one can compute y, and where 7 designates some number within the interval [0, X].
Moreover, the truncation error is close to coh*~®f"(£), where ¢, is some constant
independent of f, and ¢ is some other number also contained in the interval [0, X].
Consequently, an optimum step size would be of order h ~ (e, f(n)/f"(€))'/? when
minimizing with respect to both trucation and roundoff errors.

Unless specific information indicating the contrary is available, one may assume
that f and f” are not too irregularly behaved. Under these conditions f(n) =~ f(X)
and f"(n) =~ f"(X), and one can then follow the suggestion of Press et al. [89, p. 187]
by setting f(X)/f"(X) =~ X (except near X = 0 where some other estimate for this
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quantity should be used). This scheme provides some advice on the choice of step size
if roundoff effects are considered problematic in some specific application at hand.

1.4.2 Riemann-Liouville Fractional Integrals

In the course of our work we shall not only have to approximate fractional derivatives,
but also fractional integrals. As indicated above, the natural concept for the fractional
integral to be used in connection with Caputo derivatives is the Riemann-Liouville
integral described in (1.2). We therefore present a numerical scheme for the solution
of this problem, too. The underlying idea of the algorithm, stated in a formal way
in Alg. 1.2 below, is completely identical to the idea presented above for the Caputo
derivative; that is, we use a product integration technique based on the trapezoidal
quadrature rule. Said differently, we replace the given function f on the right-hand
side of (1.2) by a piecewise linear interpolant, and then we calculate the resulting
integral exactly. As a matter of fact, this algorithm will also be part of the scheme
introduced in Alg. 1.3 in the pages that follow for the numerical solution of certain
Caputo-type differential equations.

It is easily seen that the error of this algorithm is of the order O(h?) where, as
above, h denotes the step size. Once again, we can improve the accuracy by adding a
Richardson extrapolation procedure to the plain algorithm. The required exponents
are known (cf. [52, §4]) and the resulting scheme is detailed in Alg. 1.2. Both the
fundamental algorithm itself, and the Richardson extrapolation procedure, may be
used for any positive value of c; there is no need to impose an upper bound on the legal
range for o.. This is due to the fact that the Abel (power law) kernel in the definition
(1.2) of the Riemann-Liouville integral is regular, or at worst, weakly singular, and
hence, integrable (at least in the improper sense) for any o > 0. In contrast, the
corresponding kernel in the definition (1.8c) of the Caputo derivative is not integrable.
This kernel requires special regularization methods that are compatible with our
approximation method, and as such, our scheme for approximating Caputo derivatives
is only valid for 0 < a < 2, whereas, our corresponding scheme for approximating
Riemann-Liouville integrals is valid for all o > 0.

Notice the formal correspondence between Alg. 1.2 (for fractional integration of
order o) and Alg. 1.1 (for fractional differentiation of order o). Except for the
initial conditions that have to be taken into account additionally, the latter is simply
obtained from the former by replacing the parameter o by —a.Y This relates to
the intuitive (but not mathematically strictly correct) interpretation of fractional
differentiation and integration being inverse operations. Also notice that the index
ordering is inverted between these two algorithms, which is in keeping with accepted
indexing conventions. Algorithm 1.1 indexes from zo = X to zy = 0, while Alg. 1.2
indexes from zog = 0 to zy = X.

A visualization of quadrature weight versus nodal index for several values of o
pertaining to Alg. 1.2 is presented in Fig. 1.2. What is striking about this figure is the

9Similarly, the Griinwald-Letnikov algorithm for approximating Riemann-Liouville fractional
derivatives of order « also applies for approximating Riemann-Liouville fractional integrals by re-
placing their algorithmic parameter o with —a [82, §8.2].
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Algorithm 1.2 Computation of a Riemann-Liouville fractional integral (o > 0).
For interval [0, X] with grid {z, = nh: n=0,1,2,..., N} where h = X/N, compute
Jeyn(h) = wrey S neo CrN Yns
Joy(X) = Jeyn(h) + O(h?),
using the quadrature weights (derived from a trapezoidal product rule)

(14 a)N® — Nte 4 (N — 1)t+e if n =0,
ey =4 (Non+1)+e — 2(N—n)l+e + (N—n—1)1*e, if0<n <N,
1, if n=N.

Refine, if desired, using Richardson extrapolation
Jeye = (Jeyect - e geyett) / (1-2),
Jey(X) = Joyt + O(h™),
such that if 0 < a < 1 then r,_; is assigned as
7‘0:—“2, r1=2+a,
7’2:3, 7‘3:3+C¥,
’l"4:4, r5:4+a,
Te = 5, e
Note: Whenever o > 1, the same values appear in the sequence rg,7q,72,..., but

they now have to be ordered in a different way to keep the sequence monotonic. (For
example, if 1 < @ < 2then we have ro = 2,7, =3,12 =2+a,r3=4,14=3+0,...).

obvious difference between domains 0 < @ < 1 and 1 < a < 2. Whenever o = 1, the
algorithm reduces to classic trapezoidal integration. Whenever 0 < o < 1, the earlier
states will contribute less to the overall solution than will the more recent states, but
they do not entirely fade out. Fractional integration exhibits long-term memory loss
when 0 < a < 1 but, unlike fractional differentiation, fractional integration does not
experience a total loss (or fading away) of past memories. Also, the smaller the value
of a (i.e., the closer it is to zero) the greater the degree of long-term memory loss
will be. In contrast, whenever 1 < a < 2, the earlier states will contribute more to
the overall solution than will the more recent states. Fractional integration therefore
exhibits short-term memory loss when 1 < a < 2. This is like an elderly person who
remembers in vivid detail what happened years ago, but who cannot recall what took
place yesterday. Furthermore, the greater the value of a (i.e., the closer it is to two)
the more pronounced the short-term memory loss will be.

The line segments displayed in Fig. 1.2 represent averaged and normalized weights
of quadrature over each subinterval. The actual nodal weights, c, n, are often ob-
served to be non-monotonic at either of the two nodal endpoints. In this integration
scheme there are N + 1 nodal weights that apply to IV subintervals, but there should
be exactly one weight per subinterval. So how the algorithm works (internally, and
roughly speaking) is to average these weights in a trapezoidal fashion, as outlined in
Table 1.1. In other words, the inner weights are divided into two equal halves with
each half going to one of the two adjoining subintervals. In addition to averaging, the
displayed line segments have been normalized to the interval [0, 1]. Normalizing allows
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Diethelm’s Quadrature Weights for Fractional Integration
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Figure 1.2: Effective weights of quadrature (c, ) for approximating the Riemann-
Liouville fractional integral (1.2) over interval [0, X] using Alg. 1.2, plotted here for
various values of a with N = 8.

| Subinterval | Averaged Quadrature Weight (c,, n) |
[0, X/N] | {con) =con+3C1n
[X/N, (n + DX/N] | o) = E(con + corin)y  (n=1,2,..., N 2)
(N -1)X/N,X] | {en-1,n) = %CN—l,N +CNN

Table 1.1: Averaging procedure used to compute effective weights of quadrature for
approximating Riemann-Liouville integration as they relate to Alg. 1.2.

one to discern the influence of @ on quadrature in a meaningful way. The outcome is an
averaged and normalized quadrature weighting that is monotonic in the nodal index
number, as demonstrated by the line segments in Fig. 1.2, where there is a monotonic
increase (decrease) in the effective weight of quadrature, (cp n) / maXm(Cm,n), With
increasing nodal index number for 0 < a <1 (1 < a < 2).

1.4.3 Caputo-Type FDE’s

A numerical algorithm that solves Caputo-type FDE’s has been derived by Diethelm
et al. [23] and is listed in Alg. 1.3. A thorough analysis of its algorithmic error is given
in [22]. This algorithm is of the PECE (Predict-Evaluate-Correct-Evaluate) type.
Other numerical algorithms exist that solve FDE’s (e.g., Gorenflo [44] and Podlubny
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Algorithm 1.3 Computation of a Caputo FDE (0 < a <2, a #1).
For interval [0, X] with grid {z, =nh: n=0,1,2,...,N: h = X/N}, predict with
yh(R) = i X5 v + sty oo b £(@n, ),
using the quadrature weights (derived from a rectangular product rule)
bon = (N —n)* = (N —n—-1)%,
and evaluate f(X,y%), then correct with
yu(h) = Dich 2y ® 4 o (S0 e Elen, ¥0) + ena £, 35))
y(X) = yn(h) + O (RmnG+eD),
using the quadrature weights (derived from a trapezoidal product rule)

(1+a)N® — N¥e 4+ (N — 1), if n =0,
can = ¢ (N—n+1)1** —2(N—n)t** + (N—n-1)1** if0<n <N,
1, if n =N,

and finally re-evaluate f(X,yn) saving it as f(zn,yn)-
Refine, if desired, using Richardson extrapolation
ye = (vt -2 yet) [ (-2,
y(X) =yi +O(h™),
such that whenever 0 < a < 1 the exponent r,_; is assigned as
To = 1+ «,
rn=2 r=2+a r3=3+aq,
7‘4=4, 7'5=4+O€, 1‘6=5+Ot,
rr=6, -,
or whenever 1 < a < 2 it is assigned as
7‘0:2, r1:1+a, r2=2+a,
T3 =4, rqs=3+a, Ts =4+a,
Te = 6)

[86, Chp. 8]), but they focus on solving Riemann-Liouville FDE’s and usually restrict
the class of FDE’s to be linear with homogeneous initial conditions. Algorithm 1.3
solves non-linear Caputo FDE’s with inhomogeneous initial conditions, if required.

The restriction that a # 1 in this algorithm is purely for formal reasons. If
a = 1, then we can still implement the algorithm exactly in the indicated way. It
must be noted, however, that it then is the limit case of an algorithm for fractional
differential equations, and these equations involve non-local differential operators.
Thus, the resulting scheme is non-local, too. In contrast, a method constructed for a
first-order equation will, in practice, always make explicit use of the local structure of
such an equation to save memory and computing time. Therefore, the case a = 1 of
our algorithm will never be a competitive alternative to the usual methods for first-
order equations. In particular, our algorithm is distinct from the algorithm known as
the second-order Adams-Bashforth-Moulton technique for first-order problems when
a=1.
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Diethelm’s Quadrature Weights for Fractional Integration
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Figure 1.3: Normalized weights of quadrature b, y for the predictor that approximates
Caputo FDE’s (1.9) over interval [0, X] when using Diethelm et al.’s [23] Alg. 1.3,
plotted here for various values of o with V = 8.

Illustrations of quadrature weight versus nodal index for several values of o, as
they pertain to the PECE method of Alg. 1.3, are presented in Figs. 1.2 & 1.3 with the
former figure pertaining to the corrector and the latter pertaining to the predictor.
FDE’s, like fractional integrals, exhibit long-term memory loss when 0 < a < 1, no
memory loss when o = 1, and short-term memory loss when 1 < o < 2.

Unlike the (c, n) in Fig. 1.2, where the N + 1 quadrature weights are averaged
at the beginning and end of each subinterval in order to get N effective weights
for N subintervals, the b, 5 in Fig. 1.3 are fixed to the beginning of each of the N
subintervals, and as such, do not require any ‘effective averaging’ to take place. This
is a consequence of the b, y quadrature weights belonging to an explicit integrator,
while the ¢, v weights belong to an implicit integrator. Contrasting Figs. 1.2 & 1.3,
there is little difference between the b, y and (c, n) curves, indicating that there is a
much stronger influence of o on the weights of quadrature than there is on the order
of accuracy (e.g., O(h™in21+2))) that a particular integration scheme provides.

Differential equations of fractional order have found recent applications in a variety
of fields in science and engineering (e.g., see references in [57, 86]): chemical kinetics
theory, electromagnetic theory, transport (diffusion) theory, fractal theory, control
theory, electronic circuit theory, porous media, etc. One of the first applications of
the fractional calculus was viscoelasticity, which is the primary focus of this work.
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Efficient approximations

Ford and Simpson [35] have extended Alg. 1.3, which possesses O(n) operation counts
at each stage and O(n?) overall, to a more efficient scheme with O(nlogn) counts
overall, while retaining the accuracy of the method.

1.5 Mittag-Lefler Function

The (generalized) Mittag-Leffler function E,(z) is an entire function (in z € C) of
order 1/, that is defined by the power series [31, §18.1]

ZI‘(ﬂ+ )’ aeR", BER, z€C, (1.11)

with E4(z) = E,1(z) being the original function studied by Mittag-Leffler [79]. This
function plays the same role in differential equations of fractional order as the expo-
nential function e* plays in ordinary differential equations; in fact, Ey;1(z) = €°.

A special form of the Mittag-Leffler function,

G(t—t’);=Ea,1(—((t—t')/r)“), 0<a<l 0<7, 0<t<t

and its derivative,

8G(t - tl) _1 o
Mt~ )= e = = Bag (— (= )/7)7),
appear in FOV, which is the subject of much of this report.
We now present some important properties of the Mittag-Leffler function, and a
numerical algorithm for its rigorous solution, both of which are useful when consid-
ering differential equations of fractional order.

1.5.1 Analytical Properties

In spite of the fact that in applications to differential equations of fractional order
where the Mittag-Leffler function is typically restricted to the real line, we still need
to give some of its properties in the complex plane. The main reason for this is that
the numerical algorithm we present in the next sub-section consists of two parts: the
first part gives a numerical value for the Mittag-Leffler function with o < 1, while the
second one uses, for o > 1, some special formula that reduce this case to the previous
one. These special formulz are defined over the complex plane and are given by

1

m
E.p(z) = 5 - Z Ea/(2m+1)”3(zl/(2m+1)62i1rh/(2m+1)), m=0,1,2,..., (1.12a)
=—m

and

1 m—1 .
Eaﬁ(z) = m Z Ea/m,ﬁ(zl/mezmh/m)7 m=12,..., (1.12b)
h=0
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where ¢ (:= v/=1) is the imaginary unit number. Obviously, if & > 1, and even if 2
is a real number, we still need to evaluate the numerical values of the Mittag-Leffler
function with, in general, a complex argument (and a < 1).

First, we present some important integral representations of the Mittag-Leffler
function. Let us denote by y(¢;¢) (¢ > 0, 0 < ¢ < m) a contour in the complex
A-plane with non-decreasing arg A consisting of the following parts:

1) the ray arg A = —¢, |\ > ¢

2) the arc —p < arg A < ¢ from the circumference || = ¢;

3) the ray arg A = ¢, |A| > e.

In the case where 0 < ¢ < 7, the complex A-plane is divided into two unbounded parts
by the contour 7(e; ¢): domain G(~)(e; ) is to the left of the contour, while domain
GW(g ) is to its right. If p = «, the contour 7(e; @) consists of the circumference
|A| = € and the cut —0o < A < —e. In this case, domain G(~)(¢; ¢) becomes the circle
|A| < €, while domain G*)(¢; ¢) becomes the region {\ : |arg A| < 7, |A| > €}.

Let 0 < a < 2, let B be an arbitrary (real or complex) number, and let a non-
negative number ¢ be chosen such that

aTm

5 < ¢ < min{m, ar}. (1.13)
Then we have the following integral representations for the Mittag-Leffler function:
1 e)\l/"‘)‘(l—ﬁ)/a
E, = — T d) ze G g0), 1.14
0 =g [T 2e6OEp), (law

and

Eap(z) = d\, z€ GW(ep).  (1.14b)

2B a gzt/® 1 / AV \1B)a
7(€59)

o 2mia A—2z

If B8 is a real number, as assigned in (1.11), then the formule of (1.14) can be
rewritten in forms that are more suitable for numerical evaluation (see Gorenflo et al.
[45]). In particular, if 0 < @ <1, B € R, |arg z| > ar,z # 0, then

an

Eap(2) =/ K(a,B8,x,2) dx+/ P(a,B,€e,0,2)dp, €e >0, B R, (1.15a)

—Qam

E.p(z) = / K(a,B,x,2)dx, if B<1+q, (1.15b)
0
sin(amr) [ X 1
E, = — dx— =, ifB=1 , 1.15
#2) am /0 X2 — 2xz cos(am) + 22 X=5 ! B +a (1.15¢)
where
K(o,f,x.2) = x Ve x* ysin(n(1 — B)) — zsin(n(1 — B + )
YDy X, %) = aT X2 — 2X2 cos(a7r) + 22 )
P(a, IB, 60, z) _ €1+(1_B)/°‘ eel/a cos(®/a) (COS(CU) + 28111((,0)) |

2am eet — 2
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w = €’ sin(%/a) + p(1 + 1-8)/,).

The representations in (1.15), and similar formula for the cases |arg z| = an and
|arg z| < am presented in Gorenflo et al. [45], are an essential part of the numerical
algorithm listed in the next sub-section.

Using the integral representations in (1.14), it is not too difficult to get asymptotic
expansions for the Mittag-Leffler function in the complex plane. Let @ < 2, 8 be an
arbitrary number, and ¢ be choosen to satisfy the condition (1.13). Then we have,
for any p € N and |z| — oo:

1) Whenever |arg z| < ¢,

2 B)a gz e

E,p5(z) = ZI‘(ﬁ o +0(|2|717P). (1.16a)

2) Whenever ¢ < |argz| <,

Eop(2) = ZF(ﬁ o) +0(|2]7*7P). (1.16b)

These formulae are also used in our numerical algorithm.
Thorough discussions of properties of the Mittag-Lefller function can be found,
for example, in Refs. [31, 76, 86].

1.5.2 Numerical Algorithms
Robust

The numerical scheme listed in Alg. 1.4 for computing the general Mittag-Leffler func-
tion E,p(z) is taken from an obscure paper written by Gorenflo et al. [45]. Their
algorithm uses the defining series (Eqn. 1.11) for arguments of small magnitude, its
asymptotic representation (Eqn. 1.16) for arguments of large magnitude, and special
integral representations (the formule in (1.15) for the case where |arg z| > am, and
similar representations for the cases |arg z| = am and | arg z| < am) for intermediate
values of the argument that include a monotonic part [ K(e, 8, X, z)dx and an os-
cillatory part [ P(a, B, ¢, ¢, z) dg, which can themselves be evaluated using standard
techniques (cf. App. B).

Efficient

Algorithm 1.4 can produce a numerical result to any desired level of accuracy, but
these computations are expensive and therefore their use in a finite element setting, for
example, is prohibative. To meet this need, we have constructed a table of Padé ap-
proximates for E,(—2z®) in App. C for z > 0 and a € {0.01,0.02,0.03,...,0.98,0.99}.
As we shall see in the next chapter, this form of the Mittag-Leffler function arises in
many fractional-order, viscoelastic, material models, including those of interest to us.

Another algorithm for solving the Mittag-Leffler function E,(z) (0.02 < oo < 0.98
with a reported relative error that is less than 1.6 x 107°) has been published by
Welch et al. [109].
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Algorithm 1.4 Computation of the Mittag-LefHler function.

GIVEN o> 0, B € R, z € C THEN
IFz2=0 THEN
Eop(2) = I‘(B)
ELSIF |z| < 1 THEN
ko max { [(1 o], [In[em(l — |2])]/In(|2])] }
ap(2) = Zk =0 I‘(ﬂiak) + O(em)
ELSIF |2| > |10 + 50| THEN
ko = [~ In(em)/In(|2])]
IF |arg z| < on/4 + 1/ min{m, om} THEN
Eap(z) = 1207 — 5700 T6—ah) ak) +O(em)
ELSE

Eup(z) = Zk 1r(§ ak) +O(em)

ELSIF o < 1 THEN )
o= { max{1, 2|z, (—In(=m/s))"}, >0
max{( |ﬁ|+1) 2|z|, (—2In(mem/s(p1+2)28pen)) ), B <0

K(a,B,x,2) = x“ Pa excp(—x o) KRl pllz snlrl- ol

P(a,B,e,¢,2) = e+ 0P/ exp(e'/ cos(¢/a))———°°S(“’)+."°’m(“’)

eexp(ip)—z
w=¢(1+ -B)/y) + €'/~ sin(4/y)
IF |arg z| > ar THEN

IF 8 < 1 THEN
Eop(z) = [ K(o, B, x,2) dx + O(em)
ELSE

Eo5(2) = [° K(e, B,x,2)dx + [*7 P(a,B,1,6,2) dp + O(em)
ELSIF |arg z| < ar THEN

IF 8 <1 THEN
Ea,ﬁ(z) — 0XO K(a,ﬂ, X, Z) dX + zl;z(l—ﬁ)/aezl/a + O(Sm)
ELSE
Eop(2) = |z|/2 K(a,B,x 2)dx + [T P, B, V#l/2, 6, 2) do + L1y 0Pa gz
+ O(em)
ELSE

Ea,ﬁ(z) (|z|+1) K(a, B, X, z)dx + fmr P(a, B, (z+1)/3, @, z) do + O(‘Sm)
ELSIF 1 < a < 2 THEN

Eap(2) = Ea2,8(2"%) + Bap2,8(—2"?)
ELSE
= |o/2] +1

,ﬁ(z) A SR Eagkos (2% exp(2mik/y, )
END

Parameter ¢, denotes machine epsilon (precision).
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Chapter 2
1D FOV

In the 1940’s, Scott Blair [8] and Gerasimov [42] independently proposed a material
model bounded between a Hookean solid (o = 0) and a Newtonian fluid (o = 1).
Their relationship—a fractional Newton model—can be written as o(t) = ur*Dge(t),
where o and € denote stress and strain, respectively, which are considered here to be
causal functions of time ¢. The coefficient ur (> 0) represents a single material
constant (a generalized viscosity: p has units of stress, while 7 has units of time),
and exponent o (0 < a < 1) can be considered as a second material constant.
Experimental results motivated Scott Blair’s model development. Mathematics, on
the other hand, motivated Gerasimov who was the first to consider an Abel kernel
for the relaxation modulus in Boltzmann’s general theory of viscoelasticity.

Bagley and Torvik [4] demonstrated that the molecular theory of Rouse (for dilute
solutions of non-crosslinked polymer molecules residing in Newtonian solvents) has
a polymer contribution to stress that corresponds to a fractional Newton element
whose order of evolution is a half (i.e., & = 1/2). They also state (without proof) that
the molecular theory of Zimm (for dilute solutions of crosslinked polymer molecules
residing in Newtonian solvents) has a polymer contribution to stress that corresponds
to a fractional Newton element whose order of evolution is two thirds (i.e., a = %/3).

Gemant [38] was the first to propose a fractional viscoelastic model. He extended
the notion of a Maxwell fluid by replacing its first-order derivative on stress with the
semi-derivative, and in doing so, he proposed that [1+ /n/ uD,! *lo(t) = nDe(t),
where g (> 0) and 7 (> 0) are material constants. The fractional Maxwell fluid,
which is a spring in series with a fractional Newton element, actually has the form

[1+72D¢]o(t) = 'Dfe(t), oo+ = gso+, (2.1)

where 1 (> 0) is the viscosity, 7 (> 0) is the characteristic relaxation time, and
exponent o (0 < a < 1) is the fractal order of evolution, which is taken to be the
same for both stress and strain, while oo+ and o+ are the initial states of stress
and strain at time ¢ = 0T, thereby allowing for an inhomogeneous initial state of
finite stress—a characteristic that Gemant’s model does not possess. The fractional
Maxwell fluid was first discussed in the manuscript of Caputo and Mainardi [13] as
a special case to their material model (Eqn. 2.2 below). We refer to (2.1) as the
standard FOV fluid in 1D.

NASA/TM—2002-211914 17



Caputo [12] introduced a fractional Voigt solid o(t) = u[l + p*D2]e(t) to model
the nearly rate-insensitive dynamic response of Earth’s crust over large ranges in
frequency when excited by earthquakes. Here o (> 0), p (> 0) and o (0 < a < 1)
are the material constants. As a mechanical model, this is a spring in parallel with
a fractional Newton element. A more appropriate representation of solid behavior is
the fractional Kelvin model, which is a spring in parallel with a fractional Maxwell
element. This material model was introduced by Caputo and Mainardi [13] and has
the form

[1+ 7°D2)o(t) = [l + p*D2)e(t), oo+ =p (§)a60+, (2.2)

where 4 (> 0) is the rubbery modulus, u(p/7)* (> p) is the glassy modulus, 7 (> 0)
is the characteristic relaxation time, p (> 7) is the characteristic retardation time,
and exponent o (0 < a < 1) is the fractal order of evolution. This model, unlike
Caputo’s original model, allows for an inhomogeneous initial state of finite stress.
Bagley and Torvik [5] have shown that the fractal orders of evolution in stress and
strain must be the same, as written in (2.2), and as originally proposed by Caputo and
Mainardi, in order for this constitutive realationship to be compatible with the second
law of thermodynamics; specifically, in order to guarantee a non-negative dissipation
whenever a cyclic loading history is imposed on the material. We refer to (2.2) as the
standard FOV solid in 1D, in the spirit of Zener [111, pg. 43] referring to Kelvin’s
model [1 + 7D]o(t) = p[l + pD]e(t) as the “standard linear solid”.

The initial conditions present in (2.1 & 2.2) come about by taking the Laplace
transform* of these constitutive formulee. What one learns from these transformations
is that if the material model is to be physically admissible, in the sense that it
propagates a wave front at finite speed, then that part of the transformation which
pertains to the initial state must be independent of the Laplace transform variable s in
the frequency domain, or it must have like dependencies on both sides of the equation

*The Laplace transform f(s) of function f(t) is given by the mapping procedure f(t) + f(s) =
f0°° exp(—s7) f(7) dr, where <+ denotes the juxtaposition of function f(¢) with its Laplace transform
f(s). In fractional-order viscoelasticity, the Laplace transform pairs

tn—l sa—B

la]
- 1
D2f(t) +s*f(s) = Y 5ok 1), O and tP71E, g(+at®) +
k=0

s®*Fa

have particular significance, where a,a,n,t € Ry, 8 € R and Eq g(t) = Y pop t¥/T(B + ak) is the
general Mittag-Lefller function, which plays a role in FDE’s like that which the exponential function
plays in ODE’s; in fact, E 1(t) = e’.

The above formula are analytic continuations of the well known Laplace transform pairs

- m—1 m—1
D™f(t) = s™f(s) — Z smk-t éf), LA 1 and et !
k=0

(m—=1) " sm " sFa’

where m € N and a,t € R;. In contrast to the Laplace transform of Caputo’s deriviative, which
contains a sum of integer-order derivatives of the initial state, the Laplace transform of the Riemann-
Liouville derivative contains a sum of fractional-order derivatives of the initial state, making the
initialization of Riemann-Liouville based differential equations a difficult task, but not an impossible
one [73].
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that then cancel out in the initial state. Having derivatives of equal order on both sides
of the equation, as in the standard FOV fluid and solid material models, is one way
to ensure that this physical constraint is adhered to. In the aerodynamics literature,
this process of addressing the initial state for consistency of initial condition in the
frequency domain is known as the method of shocks, which was introduced into the
FOV literature by Bagley and Calico [3]. Another very important reason to restrict
the class of admissible material models to only include those that propagate waves
at finite speeds has to do with stability. Material models that predict infinite wave
speeds will become mathematically unstable at some critical finite velocity [65].

One objective of this paper is to derive 3D versions of the standard, FOV, fluid
and solid, material models without imposing any constraints as to the magnitude of
deformation. To the best of our knowledge, Drozdov [27] is the only person to have
extended linear, fractional-order, viscoelastic formulations into 3D formulze applicable
to non-linear mechanics where finite strains are present. Specifically, he extended
the following 1D models: [1 + (n/p)*D%]o(t) = nDe(t), which is a generalization
of Gemant’s [38] fractional Maxwell model, and o(t) = p[l + p*DZe(t), which is
Caputo’s [12] fractional Voigt model. In Chps. 7-7?, we introduce 3D versions for
the standard FOV fluid and the standard FOV solid, which are presented here in 1D
in Eqgns. (2.1 & 2.2). '

2.1 Material Functions

The parameterization procedures that follow assume infinitesimal strains in homoge-
neous 1D deformations.

Boltzmann’s [9] linear theory of viscoelasticity, which includes the standard FOV
models of (2.1 & 2.2), can be expressed as an integral equation with a hereditary
kernel that convolves with a change in the independent state variable according to
the convolution rules of either Stieltjes or Riemann. Whenever stress responds to
strain, this theory can be expressed in terms of a (relaxation) modulus G(t) where
[16, pp. 3-9]

o(t) = /0 "Gt — ') de(t) = e G(2) + /0 : Gt —t)De(t)dt,  (2.3a)

or conversely, whenever strain responds to stress, Boltzmann’s theory can be re-
expressed in terms of a (creep) compliance J(t) where

e(t) = /0 C Tt — ) do(t) = ops J(t) + /0 : J(t —¢') Do(t') dt. (2.3b)

These two convolution integrals can be solved analytically using Laplace transform
techniques, provided that the loading histories are simple enough.
The standard FOV fluid (2.1) has a modulus G(t) and a compliance J(t) of [13]

G(t) = 2 Ea(~(4+)%)

T (¢:)° , (2.4)
0=1 (1 )
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whereas, the standard FOV solid (2.2) has the material functions [13]

o=+ () + £ i)
-0 (2= nrom)

where E,(z) = E,1(z) is the Mittag-Lefler function (see §1.5).

: (2.5)

2.1.1 Static Experiments

Stress relaxation experiments are often executed for the purpose of materials charac-
terization, where

(2.6)

o(t) | Ea(—(¥r)®) for standard FOV fluids,
&+ £57 Ba(—(#:)%) for standard FOV solids.

Oo+
Figure 2.1 presents a normalized plot of stress relaxation curves for the standard
FOV fluid, with o = 1 designating the response of a classic Maxwell fluid. The
stress relaxes to zero monotonically in a FOV fluid for all o € (0,1]. Figure 2.2
presents a normalized plot of stress relaxation curves for the standard FOV solid,
with @ = 1 designating the response of a classic Kelvin solid. For all a € (0, 1], the
stress monotonically relaxes to a unique non-zero value in a FOV solid as t — oo,
which distinguishes solid behavior from fluid behavior. Here, and in the following
figures of this chapter, the relaxation 7 and retardation p times are assumed to scale
as (#/;)* = b for purposes of illustration. These figures show that the fractal order of
evolution controls the shape of the relaxation curve.

Relaxation, as described above, exhibits an exponential decay as ¢t — oo when-
ever a = 1, and an algebraic decay to infinity whenever 0 < a < 1. This corresponds
to a regular rate process leading to strong mixing (exponential decay) versus an in-
termittent rate process causing weak mixing (algebraic decay), as quantified by a
probabilistic fluctuation of recurrent events (molecular collisions) governing the ve-
locity relaxation process in polymer chain physics. Douglas [25] has shown, through
probabilistic reasoning using Feller’s renewal theory, that the autocorrelation function
describing relaxation phenomena is governed by a fractional-order differential equa-
tion whose solution is given in terms of the Mittag-Leffler function, and whose order
of evolution correlates with the degree of intermittency in the relaxation process.

Douglas [25] also states that the stretched exponential, e.g., exp(—(t/-)*), often
used to empirically fit relaxation data in the literature, does not arise from probabilis-
tic considerations in polymer chain physics. Popularity of the stretched exponential
over the Mittag-Leffler function has two likely sources: many researchers are not fa-
miliar with, or have even heard of, the Mittag-Lefller function, and if they are familiar
with it, they do not likely know how to compute its value. With respect to the latter,
see Alg. 1.4 and App. C.

NASA/TM—2002-211914 20



Relaxation Modulus: Standard FOV Fluid
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Figure 2.1: Normalized diagram for stress relaxation of a fractional Maxwell fluid.
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Figure 2.2: Normalized diagram for stress relaxation of a fractional Kelvin solid.

NASA/TM—2002-211914

Normalized Time, t/ T

Relaxation Modulus: Standard FOV Solid
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Creep Compliance: Standard FOV Fluid
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Figure 2.3: Normalized diagram for creep of a fractional Maxwell fluid.

Creep experiments are also performed for purposes of materials characterization,
where

) )1+ e (47)° for standard FOV fluids,

Eo+ 1+ &ar—‘ai (1 — Ea(—(t/p)“)) for standard FOV solids. (27)
Figure 2.3 shows a normalized plot of creep curves for the standard FOV fluid. A
specimen will creep without bound in a FOV fluid for all @ € (0,1]. However, only
in the case of a Maxwell fluid where o = 1 is the ‘effective’ viscosity (i.e., the slope)
a constant. Conversely, FOV fluids will eventually (at infinite time) stop creeping
altogether (see Eqn. 2.9). Figure 2.4 shows a normalized plot of creep curves for the
standard FOV solid. Here creep stops at a unique threshold level in strain for all
a € (0,1]. Steady-state creep behavior cannot be predicted by this class of material
models. The fractal orders of evolution influence the shape of these curves, too, and
in the case of a solid, they also influence the time required to attain saturation.

It is difficult to parameterize an FOV solid with only relaxation data, or with only
creep data. This is because it is difficult to acquire sufficient sensitivity in the data
to the parameter p in the case of relaxation, or to the paramter 7 in the case of creep.
But whenever relaxation and creep data are used together during estimation, ample
sensitivty will exist for all material constants and good data fits can be expected.

Although Figs. 2.1-2.4 are informative, they are not as practical as one would like
in the sense that one cannot directly extract the order of evolution, o, from them via
some graphical technique. However, if one were to measure stress rates in a relaxation
experiment, or strain rates in a creep experiment, then the order of evolution could,
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Creep Compliance: Standard FOV Solid
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Figure 2.4: Normalized diagram for creep of a fractional Kelvin solid.

in theory, be extracted as a slope in an appropriate log-log plot of the data. In a
stress relaxation experiment

Do(t) DE, (—(t/T)"‘) for standard FOV fluids, (2.8)
oor | &5 DE,(—(y)*) for standard FOV solids, '
whereas, in a creep experiment
De(t) | miray (/i) for standard FOV fluids, (2.9)
et | =22 DE,(—(%,)*) for standard FOV solids. .

Figure 2.5 presents a graphical representation of 0Eq(—z%) /8z,! which appears in
three of the four descriptions above, with the exception being creep rate in a standard
FOV fluid, which has a power-law response. Cureously, what is observed in Fig. 2.5 is
that OF,(—z%)/8z approximates power-law behavior whenever z < 0.1. The scheme
depicted in this figure for extracting o is accurate (to two significant figures) over
the range of 1 < a < 1/», but it looses accuracy as a approaches zero; for example,
this graphical scheme yielded a value for o of 0.27 when it was actually 1/,. Even so,

tFrom Podlubny [86, pp. 21-22], one finds that

0Fan(=(*/s)*) _ Eao(=(/s)%)

oz z !

for0<a<1l,z>0andy>0.
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Derivative of the Mittag-Leffler Function
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Figure 2.5: Diagram of the derivative of the Mittag-Leffler function, 0E, 1 (—z%)/0z =
Eoo(—2z%)/z.

this is likely to be accurate enough for material characterization purposes given the
uncertainty of experiemental error. Because the time constant for creep is typically
many orders of magnitude greater than the time constant for stress relaxation, it will
be easier to satisfy a boundary of £ < 0.1 in a creep experiment than it would be to
satisfy it in a relaxation experiment; nevertheless, the experimental challenge remains
great.

2.1.2 Dynamic Experiments

Also useful for the purpose of materials characterization are dynamic experiments
where strain is controlled at a constant amplitude €9 and angular frequency w ac-
cording to £(t) = goexp(iwt), to which stress responds with a dynamic modulus of
G*(w) = G'(w)+1G"(w) such that o(t) = €¢G*(w) exp(iwt). The real G'(w) and imag-
inary G"(w) parts of the dynamic modulus are called the storage and loss moduli,
respectively, whose ratio, tan§(w) = ¢"(@)/g/(w), is often reported in the literature.
Figure 2.6 illustrates how these properties are extracted from experimental data ob-
tained under steady, oscillatory, loading conditions, where the stress-strain curve is an
ellipse with control e(t) = €¢ sinwt and response o(t) = og sin(wt + §). A material is
non-linear if the hysteresis is something other than an ellipse under sinusoidal loading
conditions. A thorough discussion of dynamic experiments, as they relate to linear

viscoelastic materials characterization, can be found in the recent text by Lakes [62,
Chp. 3].
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Figure 2.6: Extracting dynamic properties from linear viscoelastic materials.

For the standard FOV fluid (2.1), the dynamic modulus is given by

Gr(w) = (twr)®

7 Tt Gam)®
whose real and imaginary parts are
oy N (wT)* + cos(em/2)
G'(w) = T (wT)% + (wT)~® + 2 cos(27/2)
n sin(7/>)
GII —
() 7 (wT)® + (w7) = + 2 cos(o7/2)
and that ratio as .
tand(w) = sin(e/2)

For the standard FOV solid (2.2), the dynamic modulus is given by

(wT)e + cos(em/2)’

G*(w) = (3)“ (7/p)* + (wr)*

1+ (twr)e

whose real and imaginary parts are

=a(2)

G"(w) =p

NASA/TM—2002-211914

)

o (wr)* + (wp) ™ + (14 (7/5)*) cos(em/2)

pa

T

(wT)® + (wr)~ + 2 cos(em/2)

(1 = (7/p)*) sin(e/2)

) (wr

)%+ (wr) ™% + 2 cos(am/2)
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Cole-Cole Plot: Standard FOV Fluid
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Figure 2.7: Normalized Cole-Cole diagram for a fractional Maxwell fluid.

and that ratio as

and(w) = (1= (/)" sin(an/)
) = e wp e + (1 + (7)) cos(ama)

thereby requiring 7 < p if G” > 0—a well-known requirement of thermodynamics—
given that > 0,7>0,and 0 < a < 1.

A Cole-Cole [17] diagram—a plot of G'(w) versus G"(w)—is a very sensitive way to
view anomalous relaxation phenomena. Figure 2.7 presents the normalized Cole-Cole
diagram for the standard FOV fluid, with the o = 1 curve designating the response of
a Maxwell fluid. Figure 2.8 presents a normalized Cole-Cole diagram for the standard
FOV solid, which in this case translates the storage modulus of the FOV fluid by an
amount (7/,)* = 0.2, with the oo = 1 curve designating the response of a Kelvin solid.
The influence that the fractal order of evolution has on material response is readily
apparent in a Cole-Cole diagram. Fractal order affects the extent of dissipation.

Cole-Cole-type relaxations are naturally produced by random-walk models done
on fractal lattices brought about by studying the motion of a particle in restricted
geometries [37]. They also result from random-walk models done in fractal time on
regular lattices, where the probability distribution is now a decaying power-law in
time instead of the more common decaying exponential [43]. Random walks are used
to establish the mean-square end-to-end distance of polymer chains in the various
statistical theories of polymer physics, both for fluids and solids (e.g., cf. Douglas

[25]).

(2.11¢)
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Cole-Cole Plot: Standard FOV Solid
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Figure 2.8: Normalized Cole-Cole diagram for a fractional Kelvin solid.
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Chapter 3

Continuum Mechanics:
body-tensor fields

In this report we use body-tensor fields (as defined by Lodge [68, 69, 70]) for deriving
constitutive formulee, and we use Cartesian space-tensor fields (as commonly used
throughout the literature) to solve boundary-value problems. In this regard we are
free to select the tensor analysis scheme best suited for a particular task at hand,
since one can readily map body-tensor fields into space-tensor fields, and vice versa.
In this chapter we present the basic fields used in body-tensor analysis. In the next
chapter we map these fields into Cartesian space, thereby producing tensor fields that
are likely to be more familiar to the reader.

Consider a continuum consisting of an infinite set of point particles, {3}, also
referred to as mass elements, that fills a domain, B, in 3-space (B C R?). We call
this set the body B. In any admissible body-coordinate system, B, defined over B,
each particle 90 in B is assigned a unique set of body coordinates, { = (€1, E2,8%),
E € R, that are independent of time (i.e., B: P — §, cf. Lodge [69]). In this sense,
body-coordinate systems have been construed as being convected coordinate systems.

3.1 Metric Fields

The distance d.S separating any two neighboring particles—say, P and '—in B can
be quantified by using the covariant body-metric tensor, -, of Lodge [68, 70] that he

assigned to a Riemannian manifold with geometric measurement
(dSp)? = d§ - vo-d§ and (dS)? = d§ - v - d§, (3.1)

where y(B;t) is symmetric positive-definite and, most notibly, a function of time ¢
with :y_o_:z Y(B; to), wherein ¢, is usually taken to be zero (0). This tensor field has
a matrix representation of i (= [Yrc]; 7, ¢ = 1,2,3) in the coordinate system B with
components v;; = Vji = Yi;(§ 1) Sc_al_af dS(B;t) is the infinitesimal length-of-line of

the contravariant vector d§() = PP, with dSp = dS (*B; to) designating its gauge
length.
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A single dot placed between two tensor fields represents a contraction over one
array index. Likewise, a double dot (colon) will represent a contraction over two array
indices.

3.1.1 Dual

Because the metric tensor 7 is symmetric postitive-definite, it has a dual—the con-
travariant (inverse) body-metric tensor, 7 1(P; t)—whose matrix representation vt
(= [y™]) has components y¥ = y/* = y¥(g;t) in B such that y~'- 5y = J§, where
d(*B) is the mixed idem tensor with a matrix representation of & (= ﬂﬁ'ﬂ) possessing
components 6’ that equal 1 whenever 7 = j, or that equal 0 whenever ¢ # j, in every
body—coordinate system. »

This dual body-metric tensor, 1‘1, has two possible geometric interpretations.
In the first interpretation, provided by Lodge [68, pg. 318], the distance dH (B;t)
measuring the height-of-separation between any two, neighboring, material surfaces—
say, 0(€) = C and o(€ + d€) = C + dC, where C and dC are constants—belonging
to the same one-parameter family of non-intersecting surfaces, o, in B is quantified
via the contravariant body-metric tensor, 1‘1, according to

ac Jo "y Oo ac do 41 do do
(d_Ho> g L0 gg M (d_H) gL g e B

where (00/0€)(P) is a covariant vector, independent of time ¢, that is normal to
this material suraface, with contravariant vector d¢ originating on one surface and
terminating on the other. Scalar dH, := dH (; o) is the gauge length for this height-
of-separation, while v5" := v (B; to).

A second geometric interpretation for the dual metric, provided by Truesdell [108]
in an analysis done using general space-tensor fields, has a description of

-1 -1

— o — — Y —
(@A)* = (d xTE) - 37—y (dE X ) and (dA)" = (dEx) - o (d6 x D),

- - (3.3)
where det v denotes the determinant of v, which is a scalar field with a tensorial weight
of two (2), and therefore the areal metric tensor, (det 1) 771, is a relative field of like

weight. Scalar dA(%;t) is an infinitesimal area-of-surface, with dAy = dA(%;to)
designating its gauge area. This material surface contains neighboring particles J3,
B’ and P”. The normal to this surface lies in the direction of a covariant vector field
given by the cross product d€ x d{ , Wh1ch has a tensorial weight of minus one (—1),

wherein d€(B) = ‘3‘13' and d&(‘ﬁ) ‘13‘13’

The unit normal v(%B; ) to element dA is given by v dA := v/det v d§ x Eg This is
an ‘absolute’ (without tensorial weight) covariant vector that, in body tensor analysis,
is a function of time ¢ through the presence of 4(%B;t), because |[v|* =v-y v =1.
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3.1.2 Rates

The various descriptions for strain rate that are found in the literature can all be
expressed in terms of derivatives of the metric tensor, «, its inverse, 1‘1, and its

determinant, det . The time rate-of-change of the body-metric tensor, D—l’ is defined
classically through the limiting process N

7(%7 t) - 7(%7 tl)
D’Y(m: t) - lllinn t—t ’

(3.4)

while the time rate-of-change of the determinant of the body metric, D(det v)(*B; 1),
is given by -
D(det~) = (det~y) (tr Dy), (3.5)

wherein the trace, tr D, is computed as 1‘1 : D, consistent with the precepts of

general tensor analysis.
The first-order body-metric rates D'y(iB, t) and D’y 1(B; t) are not independent.
Instead, they are related through the expression

D_*y__‘l = _l_l' (Dl) -l‘l. (3.6a)

Likewise, the second-order rates D27(iI3, t) and D2 ~1(B; t) are related through

Dzl“l = l'l- (2 (D':y) 'l_l' (Dl) - (Dzl)) -l_l. (3.6b)

These identities are easily derived by applying the Leibniz product rule for differen-
tiation to the expression 1‘1~ ~ = 4, noting that D¢ = 0. Higher-order relationships
can be acquired in like manner, but they are not needed in this work.

Fractional order

From the definition of Caputo differentiation (1.8a), one can compute fractal rates
for metric evolution via the formulae*

r=a1 ), G o (DDt

t 1 )
Dfl—l(ip; to,t) = I‘(ll—- &) ). G=v)e (Dl—l)(gp; t') dt'

D¢ :y__(&p; to,t) =
(3.7)

*Because (%) # 0 whenever k > a given that k € N and a € Ry with a ¢ N, the Leibniz product
rule (1.7) applicible to the Caputo derivative (1.3) leads to a more complex identity for D"‘ ~! than

otherwise exists in the integer case (3.6a); specifically, for 0 < a < 1,

a.,—1 _ (t —t)_a -1 -1 — a —a . — —
D*l 1_?0({——-5(104._1 )—;(k)(Jk '=Y 1)(Dkl)l 1,

._n

where 70+ =7 1(PB;to+). Consequently, there is no direct relationship between D7~ and Da
These rate fields are independent of one another. This result follows from D¢ ('y ) D"&
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where the fractal order of differentiation is restricted to the range 0 < a < 1. Un-
like integer-order derivatives of the body metric (i.e., Dy(%;t) and Dy~ '(;t)),

which are one-state fields in time t, fractal-order derivatives of the body metrics (viz.,
D3y (B; to, t) and DIy~ (P; to,t)) depend on all states traversed along the time in-

terval [to, t], where we shall typically take to to be zero in this work.

3.2 Strain Fields

Strain tensors are the preferred measures for describing deformations in solids, because
solids have a quantifyible reference state. On the other hand, metric tensors are the
preferred measures for describing deformations in fluids, becuase fluids have no unique
state of reference.

Strains are two-state fields that ideally possess four characteristic properties. The
first property is: strain is a relative measure of deformation in that it vanishes when-
ever its two dependent states are coincident. The second property is: strain is addi-
tive and anti-symmetric in its dependency upon state. The third property is: strain
exhibits tension/compression asymmetry; for example, axial extensions of A and A\~!
correspond to strains that are equal in magnitude but opposite in sign. And the fourth
property is: strain is an absolute field (i.e., without tensorial weight) although, for
the most part, this is really a requirement of convience. The second and third criteria
actually quite restrictive. Only Hencky strain is known to satisfy all four of these
criteria. ‘

The classic strain measures are defined below. The first two are tensor fields that
relate to two distinct changes in length-of-line; the first tensor relates to a separation
between neighboring particles, while the second tensor relates to a separation between
neighboring material surfaces. The third strain measure is a scalar field that relates
to the volume change of a mass element.

3.2.1 Covariant

The metric geometry of (3.1) can be rearranged in such a manner that (cf. Lodge [68,
pp. 24-26])

(dS)? — (dSo)* = 2d€ - €+ d€, €:=5(7~ ), (3.8)

where €(I3; to, t) is an absolute, symmetric, covariant, strain tensor. It has properties:
i) tensor € vanishes in the reference state, €(3; to, to) = 0; ) it is additive and anti-
symmetric in its time agruments, €(B; to, t) = €(B; to, ') + €(P; ', t) for all ' € [to, 1],
regardless of the extent of deformation; and iiz')_it has no tensorial weight; however, it
does not possess tension/compression asymmetry. Typically one sets ¢y to zero, but
for the time being, we shall leave it as ¢y for clarity of discussion.

The factor of 2 that appears in (3.8) is for historical reasons. Specifically, engi-
neering strain is given by (£—£y)/£o for the infinitesimal extension of a rod with length
£(t) whose gauge length is £y := £(tp). A normalized representation of the left-hand
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side in (3.8) produces the relative strain measure

(dS)? — (dSe)? _ (dS+dS,) (dS — dSo)
2(dSp)2  2dSp dSy
_dS—dS,
T dS,

(3.9)
whenever dS ~ dSy,

demonstrating a consistency with the classic definition for engineering strain under
conditions of infinitesimal deformation.

Rates
The covariant strain-rate tensor, De(*B;t), is a one-state tensor field given by
De = 1 D7, (3.10)

because Dy = 0.

The covariant, fractal, strain-rate tensor, Dge(*B; to, t), depends on the path of
straining incurred over the interval [to, t] of integration, and is given by

Dge = 3 D2, (3.11)

because D2vo = 0 (the Caputo derivative of a constant is zero).

3.2.2 Contravariant

In similar fashion to (3.8), the metric geometry of (3.2) can be rearranged in such a
manner that (cf. Lodge [68, pp. 26-32])

dc\? [(dC\?® 60 . bo _
() () =2 cae =31 o

where {(%B;to,t) is an absolute, symmetric, contravariant, strain tensor!, which pro-
vides another acceptable representation for strain. Like g, the strain ¢ is: 4) a relative

tFrom (3.3), one can likewise define an alternative, symmetric, contravariant, strain measure as

(dAo)? — (dA)? = 2(d¢ x df) B (d€ x dg), 8= %((detlo) Yo" — (dety) ;‘1),

which is a relative measure of deformation in that B(m; to,to) = 0, and it is also additive and
anti-symmetric in its time agruments because 3(*; to,t) = B(&B, to,t') + B(P; t',t) for all t' € [to, ],
regardless of the magnitude of deformation; however, it has a tensorial weight of two (2). It can
be converted into an absolute field (i.e., without tensorial weight), but the outcome will violate the
second desirable property of a strain ﬁeld (viz., additive and anti-symmetric in state dependence).

Because tensorial weights must equal amongst all additive terms in a tensor equation, and because
all of the other tensor fields that we happen to use in constitutive development are absolute fields, it
is therefore not practical to use B as a strain measure, even though it has the desirable interpretation
of relating to changes in area-of-surface.
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measure of deformation in that {(*I3;to,t0) = 0; i) it is additive and anti-symmetric
in its time agruments because _C_—z‘,B; to,t) = C(P;to, t') + C(P; t',t) for all ' € [to, 1],
regardless of the extent of deformation, and_z'iz') it has no tensorial weight; however,
it does not possess tension/compression asymmetry.

Rates

The contravariant strain-rate tensor, D¢ (B; t), is a one-state tensor field given by
D¢ =-1Dy'=~7"(De) -y, (3.13)

because Dyg' = 0.
The contravariant, fractal, strain-rate tensor, DZ¢(*B; to,t), depends on the path
of straining incurred over the interval [to, t] of integration, and is given by
D3¢ =—-3; D37, (3.14)
because D2v,! = 0 (the Caputo derivative of a constant is zero). Unlike the integer-

order strain rates De and Dg, there is no identity relating the fractal strain rate Dje
to D2C. B

3.2.3 Dilatation

To acquire a volumetric strain measure that is additive and anti-symmetric in its
time dependency and exhibits tension/compression asymmetry, too, requires taking
a different tact. Using the conservation of mass as our guide (viz., integrating D1n p =
—3 tr D) leads to Hencky’s [50] definition for dilatation, A(%; t, t), which is a scalar

field given by (cf. Oldroyd [83])

A= %ln(det(lgl- l)) =1n(go/0) = In(dV/dVp). (3.15)

This is our third classic strain measure. Like the prior strain measures, dilatation: )
vanishes in the reference state, A(%; o, o) = 0; @) it is additive and anti-symmetric
in its time dependence, A('B;to,t) = A(P;to,t') + A(P;t',t) for all t’ € [to, ], in-
dependent of the magnitude of deformation; and 1) it is without tensorial weight.
Unlike the two prior strain measures, it 7v) possesses tension/compression symmetry
in that 1n(dV1/dV2) = — ln(de/dVl).

Scalar o(*B; t) denotes the density of mass element P, with g := o(P; to) being its
gauge density. Scalar dV (*B3; ¢) is the infinitesimal volume of mass element ‘B at time
t, with dVy := dV (B; to) denoting its gauge volume. Because det~," has a tensorial
weight of minus two (—2), while dety has a weight of plus two (2), it follows that

det(lgl- 7) has no tensorial weight, and therefore A is an absolute scalar field.
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Rates

Dilatation A is actually defined via its rate, DA(B;t), according to the expression
DA = 3tr Dl =—Dlnp=DlIndV, (3.16)

which arises from the conservation of mass. It has a fractal rate of D*A(P; to, ),
where

o —_ 1 ¢ 1 ! !
DeA = F(l—a)/to i (DAt (3.17)

which is precisely the definition of a Caputo derivative (1.8a), assuming 0 < a < 1.

3.3 Stress Fields

Stress is a linear mapping function defined by

d¢ =m-vdA, and is constrained so that = = xT, (3.18)

where 7 (B;t) is the contravariant body-stress tensor introduced by Lodge [68, 70],
which is taken to be symmetric (i.e., # = wT where superscript ‘T’ denotes the
transpose). Its matrix representation m (= [7"°]) in the body-coordinate system B
has components n”/ = /" = n¥/({;¢). The resulting contravariant vector d¢(P;t) is
a differential force of contact acting on a material surface of infinitesimal area dA
belonging to the mass element 3 whose unit normal is given by v at time ¢.

The differential area dA is assumed to be small enough (on a macroscale) that
the differential traction vector d¢p/dA (which ratios force to area) is independent of
its area, yet it must be large enough (on the microscale) that the contact force d¢p
exerted on area dA represents a statistical average taken over numerous inter-atomic
and/or -molecular forces that comprise the mass element, thus granting us with a
perspective, albeit vague, as to the (physical) size of a (mathematical) point in a
continuum.

There are times when it is preferrable to decompose stress into a sum of hydrostatic
and deviatoric (i.e., traceless) contributions, which can always be done. Here the
contravariant, deviatoric, stress tensor, 7r(; ), is defined as

13

:=m+py ', and is constrained so that trZ& =0, (3.19a)

where the trace, tr &, is computed as & : . From this expression follows the definition
for hydrostatic pressure, p(%;t), which is a scalar field given by

p=—3trm, (3.19b)

wherein tr & is determined as 7 : 7.

There are other times when it is preferrable to express stress as a contravariant
extra-stress tensor, II(B; t), defined by

O=x+py}, (3.20a)
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with the scalar p(*B;t) being a Lagrange multiplier that is subject to an isotropic
constraint of material incompressiblity; namely,

dety = detvp, or equivalently, trDy =0, (3.20b)

recalling that tr Dy = 1‘1 : Dv. The extra stress is not, in general, a deviatoric
tensor; that is, tr IT = 3(p — p) need not be zero.

3.3.1 Rates

Like the metric-rate tensor, it is a straightforward matter to establish the stress-rate
tensor, Dm, via

w(PB;t) — m(P; t)

Dz (B;t) = },1_11)1 T , (3.21a)
so that the rate of deviatoric stress, DT, becomes
Dx = Dz + (Dp)y " +p(DY7"), (3.21b)
which itself is not deviatoric because D(7 : l) = D(0) = 0 implies that
tr D = (DE) : y=-%&: (Dl)’ (3.21c)

and where hydrostatic pressure evolves according to

Dp=-1((Dz) 7+ x: (DY) (3.21d)

To compute the fractal stress-rate tensor, Dz, one must solve the integral equation

1 b1
I'(1—a)/J, (t—t)

Dem(P;to, t) = (Dz)(PB;t) dt', (3.22)

where 0 < o < 1, with like expressions applying for D7 and Dgp.

Derivatives of the extra stress IT are handled differently, because the isotropic
constraint p~~' is actually a Lagrange multiplier and therefore it can be pulled
outside the derivative.
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Chapter 4

Field Transfer:
Cartesian space-tensor fields

Body-tensor fields, space-tensor fields, Cartesian space-tensor fields, and the map-
pings between them, have all been carefully documented by Lodge in [68, 69, 70].
In Chp. 3 we presented the basic fields of body-tensor analysis. In this chapter we
present an overview of Lodge’s mappings from the body into Cartesian space. These
results are stated without proof. An useful artifact of any such transfer of field (i.e.,
mapping from the body into Cartesian space) is that the resulting spatial fields are
objective (viz., frame invariant). We also present a section containing new results for
the field transfer of fractional-order derivatives and integrals.

The operation of field transfer makes it very plain as to whether a particular spatial
field is Eulerian or Lagrangian. This characteristic of space tensors is affiliated with
the time of field transfer. Eulerian fields result from a transfer of field at current
time ¢, with this mapping being denoted by: body field = space field; whereas,
Lagrangian fields result from a transfer of field at some reference time—say, Zo (which

we arbitrarily take to be zero)—as denoted by: body field N space field. Without a
knowledge of these field transfers, it is often difficult to ascertain whether a partlcular

space field is Eulerian or Lagrangian. Detailing the underlying mathematics of l=>

and £ is beyond the scope of this report. The interested reader is referred to either
of the two texts by Lodge [68, 70].

4.1 Kinematics

In contrast with the constructs of the prior chapter, continuum B can also constitute
an infinite set of point places, {Xo}, occupying a connected region in space, S, at
some arbitrary time t, denoting its reference state. Each place X, relates to a unique
particle B in B and is given a label of X, which corresponds to the spatial position
of X, (and therefore of §B) in this reference configuration. Given an admissible,
rectangular-Cartesian, coordinate system, C, defined over S, each place X, in S is
thereby assigned a unique set of spatial coordinates, X = (X1, X2,X3), X; € R, such
that C: Xo — X.
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Later, at current time ¢ (¢ > ¢¢), continuum B coincides with another infinite set
of point places, {X}, that now occupies a different region in space, S. Each place
X relates to a unique particle 8 in B and is given a label of x with coordinates
x = (X1, X2,X3), which corresponds to the spatial position of X (and therefore of $3) in
this current configuration. Consequently, C: X — x where C is the same coordinate
system used in the mapping C: ¥, — X.

Particle B moves through space S with a velocity, v(t), of
vi= — (4.1)

whose matrix representation is given by v = [v,], with components, v; = 9x;/0t, that
are quantified in the Cartesian coordinate system C.

The fundamental hypothesis of Cartesian continuum mechanics is that the motion
at any location in the body is assumed to be sufficiently smooth in the sense that
both

bx=F-0X and 6—8£ 5X—a£
,l.._:-__ an K‘E—_B?

lie>]

“l.6x=L-6x (4.2)

exist, where F(tp,t) := O0x/0X defines the deformation-gradient tensor, and where
L(t) = 8v/dx defines the velocity-gradient tensor, neither of which is symmetric.
They have matrix representations of F' = [0x,/0X.] and L = [dv,/dx.] in the coor-
dinate system C. The deformation gradient F is positive definite because, from the
conservation of mass, B

0< 2 = det(F) < oo, (4.3)

and consequently, F ~L(to,t) = 0X/O0x always exists. In contrast, L is not positive
definite, and as such, é‘l does not exist, in general. A subtle yet important fact is
that F and F~* anchor to different locations; F anchors to X, while F~* anchors to x.

Particle P changes its motion through space S with an acceleration, a(t), of

Ov
a=—+L-, (4.4)

whose matrix representation is given by a = [a,], with components a; in coordinate
system C quantified through the chain rule by a; = dv; /0t + (9v;/0xx)(0xx/0t), where
the repeated index k is summed over in the usual way.

Position, x, velocity, v, and acceleration, a, are vector fields that establish kine-
matic attributes belonging to a point in space. The deformation gradient, F, and the
velocity gradient, L, are tensor fields that establish additional kinematic attributes
belonging to a point in a continuum.
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4.2 Deformation Fields

In an Eulerian transfer of the various body-metric tensors into Cartesian space, Lodge
[68, pg. 320] has shown that

(4.5)

where [ is the unit tensor, and B(X;ty,t) := F-FT is the symmetric, positive-definite,
deformation tensor of Finger [32], today commonly referred to as the left, Cauchy-
Green, deformation tensor. Its reciprocal field B~1(%;to,t) = F~T- F~! is the actual
deformation tensor that was introduced by Cauchy [14, pp. 60-69].

A Lagrangian transfer of these same body-metric tensors produces

1 Lﬁo g, "_)’_0 l———t'—o—>£
-1 %0, A1 -1 to ’ (46)
vy =C, Yo =1

where C(Xo;t0,t) = E T. F is the symmetric, positive-definite, deformation tensor
of Green [46], today commonly referred to as the right, Cauchy-Green, deformation
tensor. The inverse of this metric, C™*(Xo; to, t), is computed as F~1- F~T.

It is apparent from the above results that the mappings =t> and tt=°> are many-
to-one. This consequence arises from the fact that Cartesian vector and tensor fields
do not distinguish between tensorial kind (i.e., between covariant and contravariant
indices in their coordinate transformation laws, because the Jacobian is restricted to
be orthogonal for Cartesian fields), and as such, there is a loss of this information
during these mappings.*

4.2.1 Duals

Finger [32] introduced both dual-metric tensors (viz., B and C™!) into the literature.
It is well known that the fundamental metric tensors of the Eulerian and Lagrangian
frames (i.e., B~! and C, respectively) measure change in an infinitesimal length-of-line
according to -

(dSo)> =dx-B'-dx and (dS)’=dX-C-dX. (4.7)

Less known, and proven by Truesdell [108], is that the normalized inverse metrics
B / det B and g"l / det g_l provide a like geometric interpretation; specifically, they

*General space-tensor fields do distinguish between kind in their coordinate transformation laws,
and as such, field transfer between body-tensor fields and general space-tensor fields have mappings
that are one-to-one. General space-tensor fields are not introduced in this report. The interested
reader is referred to any one of the many excellent texts on the subject (e.g., Sokolnikoff [106]).
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measure change in an infinitesimal area-of-surface according tof

-1

d: -1 (dX_X@),

(dAg)? = (dx X dx) (d)_c X &tyg) and (dA)? = (dX X c/l}\_() .

- detB
(4.8a)
or equivalently, according to
dAg\? B dA \? c!
20— = d —1) =N- -N 4.8b
(dA) ' 3etg "M (dAo) T detcT Y (4:80)

where n and N are the Eulerian and Lagrangian unit-normal vectors to a matenal
surface, which relate to one-another via the pull-back formula NdA, = dX x dX =
(det F)7'FT- (dx x dx) = (det F)"*FT- ndA. Truesdell [108] closes his little-known
paper with the following insightful theorem.

“The elements of area suffering extremal changes are normal to the prin-
cipal directions of stretch, and the greatest (least) change of area occurs
in the plane normal to the axis of least (greatest) stretch; in fact, if the
principal stretches dS/dSy satisfy Ay > A2 > A3 the corresponding ratios
dA/dAO satisfy )\2/\3 S )\1A3 S /\1)\2.”

4.2.2 Rates

In an Eulerian transfer of field, Lodge [68, pp. 321-327] also determined that the
various metric-rates of the body map into Cartesian space as

Dyes2D, Dy=0=5B1=0 o)
= 7= = = = =} 4.9
Dy ' 2D, Dy =0=>B=0
where .
D(%;t) = 2(L+L") (4.10)

is the symmetric rate-of-deformation tensor. The resulting rates, expressed below for
some arbitrary tensor J, are defined by

1N«
TS

=J+L"J+4-L and J=-

e~

.i_

I~
~

LT, (4.11)

which denote the lower- and upper-convected derivatives, respectively, of Oldroyd [83)].
They reduce to Lie derivatives taken with respect to velocity v whenever 8.J /ot =
The common contributing term in these two formule,

. 8]
I=5+ () -v, (4.12)

tWe arrived at (3.3) by field transfer. Specifically, we mapped the tensor relations derived by
Truesdell [108] from general space into the body, which is a one-to-one operation. Then by executing
another transfer of field, this time mapping the formule in (3.3) from the body into Cartesian space,
which is a many-to-one operation, we arrived at (4.8a).
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is called the material derivative of J, which has a matrix representation of J =
[07,c/0t + (83,./0xk)Vi] in the coordinate system C. Here the vector operator V.
denotes the spatial gradient §/0x.

v
The formulee é = 0and B~ = 0 of (4.9) can be rewritten as quasi-linear evolution
equations for the Finger, B, and Cauchy, é‘l, deformation tensors; specifically,

+

150
I
I
115
IS
I

and B''=-D-B'—-B'-D, (4.13)

I~o
1]
I~
I
=
1~
+
11~
=

(4.14)

and is called the corotational derivative, which was introduced by Zaremba [110] and
is usually credited to Jaumann?, wherein

W(x;t) = 3(L—-L") (4.15)

is the skew-symmetric vorticity tensor. The quasi-linear evolution equation for Finger
deformation in (4.13) lies at the heart of Leonov’s [63] viscoelastic theory.
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The corotational J and lower-convected J deriviatives of any tensor J are related
via
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o A
Similarly, the corotational J and upper-convected J derivatives relate according to
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where D is the rate-of-deformation tensor. From these identities, one quickly arrives

at the evolution equations (4.13) for é and é‘l, given the field transfer results of
(4.9).
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